Absolute Determination of the Temperature Behavior of the $NO_2 + NO_3 + (M) \leftrightarrow N_2O_5 + (M)$ Equilibrium

I. Wängberg,*,[†] T. Etzkorn,[‡] I. Barnes,[§] U. Platt,[‡] and K. H. Becker[§]

Swedish Environmental Research Institute, P.O. Box 47086, S-402 58 Göteborg, Sweden, Institut Für Umweltphysik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany, and Physikalische Chemie/Fachbereich 9, Bergische Universität-GH Wuppertal, Gaussstrasse 20, D-42097 Wuppertal, Germany

Received: July 8, 1997; In Final Form: October 2, 1997[⊗]

The temperature dependence of the NO₂ + NO₃ + (M) \leftrightarrow N₂O₅ + (M) equilibrium has been studied in the temperature range 279.6–294.2 K at a total pressure of 1000 mbar synthetic air in the 200 m³ EUPHORE simulation chamber facility in Valencia, Spain. Simultaneous determination of the concentration–time behaviors of NO₃, NO₂, and N₂O₅ were obtained using the DOAS technique for detection of the NO₃ radical and FT-IR spectroscopy for detection of NO₂, and N₂O₅. The experimental data are well described by ln-([N₂O₅]/[NO₂]](NO₃]) = -60.46 ± 0.26 + (10724 ± 75)/*T* where the errors given are random and expressed as 95% confidence limits. A critical comparison is made between the values of K_{eq} determined in this work and those reported in the literature.

Introduction

The nitrate radical, NO₃, and its gas-phase chemistry has attracted experimentalists' interest for over 100 years. Since it became evident that the nitrate radical plays a key role in the atmospheric chemistry at night, interest has been focused on investigating its interactions with various other atmospheric constituents. One aspect of this chemistry is the termolecular reaction with nitrogen dioxide and the reverse reaction which together form the equilibrium,

$$NO_2 + NO_3 + (M) \leftrightarrow N_2O_5 + (M)$$
 (1, -1)

The temperature dependence of this equilibrium is a critical parameter which is necessary for understanding the NO_x-O_3 chemical system in the nighttime atmosphere. A number of investigations directed toward measuring this equilibrium constant have been reported and include simultaneous measurements of the three species involved and also indirect methods. Reviews concerning the equilibrium (1, -1), henceforth referred to as K_{eq} , can be found in Wayne et al.¹ and in the JPL 97-4 kinetic data compilation.² However, inconsistencies exist among the reported equilibrium constants. There are discrepancies between the values obtained using only absolute methods as well as inconsistencies between absolute and indirect determinations of the equilibrium constants.

Here we report the result from an investigation of the temperature dependence on the equilibrium constant performed in a large volume reaction chamber using long-path visible and FT-IR spectroscopy for sensitive and precise simultaneous determination of NO₃, NO₂ and N₂O₅.

Experimental Section

All the equilibrium measurements were performed in one of the two large EUPHORE simulation chambers at the CEAM Institute in Valencia, Spain.³ This facility consists of two-halfspherical Teflon bags, each with a volume of $\approx 200 \text{ m}^3$ which are protected against atmospheric influences by two half-sphereshaped protective metal houses. When closed the metal housing also excludes sunlight from the reactors, thus allowing "dark" chemistry experiments during the day. The concentration-time profiles of NO₂, N₂O₅, and NO₃ were determined simultaneously using in situ long-path FT-IR absorption for measurement of NO₂, and N₂O₅ and long-path differential optical absorption spectroscopy (DOAS) in the visible for measurement of NO₃. The experiments were made at 1002–1015 mbar using purified dry air as the bath gas.

The infrared system consists of a Nicolet, Magna 550 FT-IR spectrometer equipped with an MCT detector which was operated at 1.0 cm⁻¹ spectral resolution. The instrument is coupled to a White mirror system (located inside the chamber) with a base length of 8.17 m, see Figure 1. The total optical path length employed was 326.8 m. Spectra were recorded by coadding 115 scans which resulted in a time resolution of 3.2 min per recorded spectrum.

Peak absorbances of NO₂, and N₂O₅ were converted to concentrations using the following cross sections, $\epsilon_{NO_2}(1602 \text{ cm}^{-1}, \text{ base } 10)^4 = (4.71 \pm 0.26) \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1}$ and $\epsilon_{N_2O_5}(1246 \text{ cm}^{-1}, \text{ base } 10) = 8.56 \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1}$. The FT-IR cross section of N₂O₅ was calibrated relative to ϵ_{NO_2} using a flow system where NO₂ was converted to N₂O₅ in the presence of excess O₃ according to reaction 2 followed by reaction 1.

$$NO_2 + O_3 \rightarrow NO_3$$
 (2)

The process consisted of passing pure oxygen from a gas flask through a mass flow controller and into a silent discharge ozone generator which produced about 5100 ppm ozone in oxygen at a flow rate of 750 mL min⁻¹. An NO₂/N₂O₄/N₂ mixture containing 5–16% NO₂, calculated as $C_{NO_2} = [NO_2] + 2[N_2O_4]$, was passed through a second mass flow controller set to 8–38 mL min⁻¹. The ozone and nitrogen oxide flows were then mixed in a flow reactor (130 cm long, 0.9 cm id, coiled Pyrex tubing) prior to inlet into a 9 cm long FT-IR cell. The absorbances from NO₂ and N₂O₅ were measured at 970 mbar total pressure using a Nicolet 520 FT-IR spectrometer working at 1.0 cm⁻¹ resolution. The residence time (6 s) in the Pyrex

^{*} Author for correspondence. Fax: +46-31-482180. E-mail Ingvar. Wangberg@ivl.se.

[†] Swedish Environmental Research Institute. [‡] Ruprecht-Karls-Universität Heidelberg.

[§] Bergische Universität.

[®] Abstract published in Advance ACS Abstracts, November 15, 1997.

Temperature Behavior of NO₂ + NO₃ +(M) \leftrightarrow N₂O₅ + (M)

Figure 1. Experimental setup.

reactor was long enough to convert more than 99.9% of all NO₂ to N₂O₅ before the gas entered into the FT-IR cell. With the ozone generator switched off, no O₃ was produced and all NO₂ passed unchanged through the reactor and the total NO_y was measured as NO₂ accompanied by small amounts of N₂O₄. When the ozone generator was switched on, while keeping all gas flows constant, all NO₂ was converted to N₂O₅ and traces of HNO₃. The cross section of N₂O₅ was evaluated assuming a NO_y mass balance according to (I):

$$[N_2O_5] = \frac{1}{2}[NO_2] + [N_2O_4] - \frac{1}{2}[HNO_3]$$
(I)

The cross sections employed for N_2O_4 at 1261 cm⁻¹ and HNO₃ at 1326 cm⁻¹ were (1.00 \pm 0.04) \times 10⁻¹⁸, and (9.29 \pm 0.4) \times 10⁻¹⁹ cm² molecule⁻¹ (base 10), respectively.⁴ The first step in each measurement was the determination of the absorbance from NO₂. The ozone generator was then turned on and the absorption from N₂O₅ was measured. On switching off the ozone generator after the measurement the starting NO₂ absorption was obtained, showing that the total NO_y remained constant with time. By varying the initial concentration of NO₂, different N₂O₅ concentrations were obtained.

In addition, data from one experiment in EUPHORE was also used to determine the cross section of N_2O_5 relative to that of NO₂. In one of the equilibrium measurement experiments, the protective housing was opened and N_2O_5 was converted to NO_2 via photolysis of the NO₃ radical. Due to cloudy sky conditions during the day of the experiment it took about 30 min before all the N_2O_5 was destroyed. Assuming the following NO_y mass balance

$$[\mathbf{NO}_{y}] = [\mathbf{NO}_{2}] + 2[\mathbf{N}_{2}\mathbf{O}_{5}] = \frac{A_{\mathbf{NO}_{2}}}{\epsilon_{\mathbf{NO}_{2}}l} + \frac{2A_{\mathbf{N}_{2}\mathbf{O}_{5}}}{\epsilon_{\mathbf{N}_{2}\mathbf{O}_{5}}l}$$
$$A_{\mathbf{NO}_{2}} = [\mathbf{NO}_{y}]\epsilon_{\mathbf{NO}_{2}}l - \frac{\epsilon_{\mathbf{NO}_{2}}}{\epsilon_{\mathbf{N}_{2}\mathbf{O}_{5}}}2A_{\mathbf{N}_{2}\mathbf{O}_{5}}$$
(II)

eq II can be derived where l is the path length and A_{NO_2} and $A_{N_{2O_3}}$ are the measured infrared absorbances of NO₂ and N₂O₅,

respectively. A plot of A_{NO_2} versus $2A_{N_2O_5}$ should yield a straight line with a slope equal to the ratio of the cross-sections of NO₂ and N₂O₅.

The DOAS system has been described in detail elsewhere (Etzkorn et al. in ref 3) and only a brief description will be given here. The analytical light source, a Xe high-pressure arc lamp of 450 W power, was mounted on a platform 2 m underneath the chamber and a Newton-like transfer optics was used to transfer the light to a White multiple reflection system located inside the chamber. The White system (Figure 1) consisted of silver coated mirrors with a focal length of 4 m and a maximum total path length of 1152 m. The light exited the reactor via a second transfer optics which focused the light on a quartz-fiber mode mixer.⁵ The end of the quartz fiber is situated just before the entrance slit of a f/6.9 Czerny-Turner spectrometer (focal length of 0.5 m, Acton Spectra Pro 500). A 600 g/mm grating with a corresponding dispersion of 0.077 nm/ channel was used, resulting in a spectral resolution of 0.42 nm. The spectrometer was thermostated at 30 °C. For recording the spectra a photodiode array detector (Hoffmann-Messtechnik) was used. It is equipped with a Hamamatsu photodiode array (S5931-1024N). The pixel size is 25 μ m in width and 2.5 mm in height. To reduce the dark current it was cooled to -25 °C. The photodiode array detector and the spectrometer were controlled by using a software package,⁶ developed for this purpose. With this program the measurements could be performed in a completely automatic mode. To reduce the scattered light in the spectrometer and to eliminate higher order radiation from reaching the detector a short-wavelength cutoff filter (OG 590, Schott) was permanently in the light beam.

For the evaluation of NO₃ absorptions a background spectrum, recorded with an interrupted light beam, was subtracted from each sample spectrum. This procedure eliminated effects due to dark current, electronical detector offset and background light. The resulting spectrum was ratioed to a spectrum, recorded just before introduction of NO₃ to the reactor, and logarithmed. The spectrum was then subtracted by its 5000 times triangularly smoothed spectrum. Due to this "mathematical high pass filtering technique" the absorbance in the resulting spectrum is independent of changes in the light intensity and of broad band changes in reflectivity. NO₃ concentrations were calculated using the cross sections of Sander and Kirchner⁷ normalized to $\sigma(662 \text{ nm}, \text{ base e}) = 2.1 \times 10^{-17} \text{ cm}^2 \text{ molecules}^{-1}$ as recommended by Wayne et al.1 and assuming a temperatureindependent cross section. The NO3 detection limit obtained was 20 ppt.

The air temperature in the reactor was monitored with a time resolution of 10 s, using five calibrated Pt 100 temperature probes, located at different positions inside the chamber. The temperature of the bulk air could within ± 0.2 K be kept uniform, using two strong mixing fans, each having the power of 400 W.

The N₂O₅/NO₂/NO₃ mixtures used for the experiments were prepared in much the same way as described above for the N₂O₅ calibration. Here, however, ozone was mixed with NO₂ in excess. The mixing time prior to introduction into the large reactor was long in order to minimize the O₃ concentration. The concentration of O₃ after dilution in the reactor was calculated to be less than 1 ppb and in all experiments it was too low to be detected by FT-IR. By varying the NO₂ flow, different initial [N₂O₅]/[NO₂] ratios could be obtained. Initial [N₂O₅]/[NO₂] ratios were varied from 0.8 to 3.4. During the course of an experiment this ratio decreased slowly with time and more NO₂, or in some experiments, more N₂O₅/NO₂ mixture was added to obtain a broader range. For evaluation of the

Figure 2. $[N_2O_5]/[NO_2]$ versus $[NO_3]$ from an experiment at 10.4 \pm 0.05 °C. Individual equilibrium values form two groups of data as a result of an extra NO₂ addition 48 min after the start of the experiment.

Figure 3. Temperature behavior of the equilibrium NO₂ + NO₃ \leftrightarrow N₂O₅ in the range from 279.6 to 294.2 K.

equilibrium constants, the NO₃ concentration versus time was fitted to polynomial functions, from which NO₃ concentrations corresponding to exactly the same time as the NO₂/N₂O₅ data were calculated. Equilibrium constants were then calculated by combining FT-IR and DOAS data applying the expression $K_{eq} = [N_2O_5]/[NO_2]$ [NO₃]. The concentrations of NO₂, N₂O₅, and NO₃ employed ranged from 72 to 632 ppb, 131 to 573 ppb, and 0.11 to 2.2 ppb, respectively.

Results

The Equilibrium Constant. Ten experiments were done, covering the temperature range from 279.6 to 294.2 K. Each experiment lasted 90–200 min and altogether 353 individual equilibrium constants were determined. All data were fitted to an Arrhenius expression of the form,

$$\ln\left(\frac{[N_2O_5]}{[NO_2][NO_3]}\right) = A + \frac{B}{T}$$
(III)

where *T* is the absolute temperature (K) and *A* and *B* are the logarithms of the preexponential factor and the $\Delta H/R$ ratio, respectively. The temperature changed during the course of the experiments. In the most extreme case the temperature change was 0.034 deg min⁻¹, but in most experiments the temperature change was less than ± 0.009 deg min⁻¹.

In one experiment however, the temperature remained at 10.4 \pm 0.05 °C during the 94 min duration of the experiment. The result from this experiment is shown Figure 2, and the equilibrium coefficient, (1.52 \pm 0.015) \times 10⁻¹⁰ cm³ molecule⁻¹, was obtained from the slope of the plot.

The temperature behavior of the equilibrium, $NO_2 + NO_3 \Rightarrow N_2O_5$, using all the data is shown in Figure 3. The data are well described by eq IV

$$\ln(K_{\rm eq}) = -60.46 \pm 0.26 + (10724 \pm 75)/T \quad (\rm IV)$$

where errors given are random and expressed as 95% confidence limits.

Figure 4. FT-IR calibration of N₂O₅ according to eq I.

Figure 5. Ratio of NO₂ and N_2O_5 FT-IR cross sections according to eq II.

FT-IR Calibration of N₂O₅. In Figure 4, the absorbance of N₂O₅ at 1246 cm⁻¹ is plotted versus [N₂O₅]*l*, where [N₂O₅] is calculated according to eq I and *l* is the optical path length. The data yields a straight line, whose slope is equal to $\epsilon_{N_2O_5}$ -(1246.6 cm⁻¹, base 10) = (8.45 ± 0.24) × 10⁻¹⁹ cm² molecule⁻¹. The stated error is expressed as 95% confidence limits. This cross section is based on a ϵ_{NO_2} (1602 cm⁻¹, base 10) value⁴ equal to (4.71 ± 0.26) × 10⁻¹⁹ cm² molecule⁻¹. The result from the photolysis experiment is presented in Figure 5. A cross-section ratio of 0.543 ± 0.008 was obtained, which in combination with the ϵ -value of NO₂ at 1602 cm⁻¹ yields $\epsilon_{N_2O_5}$ (1246.6 cm⁻¹, base 10) = (8.67 ± 0.13) × 10⁻¹⁹ cm² molecule⁻¹. The errors given are random and expressed as 95% confidence limits

Discussion

Previous absolute K_{eq} determinations are compared with the results from this study in Table 1. Since the results determined in this study are only valid in the temperature range from 279.6 to 294.2 K the value given for $K_{eq}(298)$ was obtained by extrapolation. As can be seen the present value at 298 K is close to the measurements made by Burrows et al.8 and that of Perner et al.,⁹ but differs significantly from the values reported by Cantrell et al.,¹¹ and Hjorth et al.¹² A comparison of the Arrhenius plots from the various studies, shown in Figure 6, again highlights the agreement between the present work and that of Burrows et al.⁸ It has been shown¹² that the slightly different spectroscopic parameters employed in the earlier measurements can only partially explain the disagreements between the different studies; i.e., the discrepancies between the reported equilibrium constants are larger than the differences in the spectroscopic parameters used in these determinations. Although the N₂O₅ cross section employed here is slightly higher than in previous determinations, the large difference between the present result and some previous reports can also not be rationalized in terms of using different spectroscopic parameters.

Among the previous absolute measurements, the work by Cantrell et al.¹¹ is probably the most thorough and it is also the study with the most extensive temperature range. It can be noted that the temperature dependence, i.e., the value for the $\Delta H/R$ ratio, obtained in this work is very close to that obtained by

Temperature Behavior of NO₂ + NO₃ +(M) \leftrightarrow N₂O₅ + (M)

TABLE 1: Summary of Results from Temperature-Dependent Studies on the Equilibrium NO₂ + NO₃ ↔ N₂O^a

temp range (K)	$A (cm^3 molecule^{-1})$	$B \pm \Delta B$ (K)	$K_{\rm eq}(298 \text{ K}) \times 10^{11} \text{ (cm}^3 \text{ molecule}^{-1})$	reference ^b
297.4-298.8			3.44×10^{-11}	Tuazon et al., ¹⁰ 1984 (a)
275.0-315.0	8.10×10^{-29}	11958 ± 1018	2.17×10^{-11}	Burrows et al., ⁸ 1985 (a)
298.2-300.4			$2.15 imes 10^{-11}$	Perner et al., ⁹ 1985 (a)
242.8-397.0	7.69×10^{-27}	10818 ± 216	$4.48 imes 10^{-11}$	Cantrell et al., ¹¹ 1988 (a)
293.0-298.0	4.50×10^{-26}	10226 ± 2180	$3.73 imes 10^{-11}$	Hjorth et al., ¹² 1992 (a)
200.0-300.0	2.7×10^{-27}	11000 ± 500	$2.90 imes 10^{-11}$	Cantrell et al., ¹³ 1993 (r)
200.0-300.0	2.46×10^{-27}	11028	$2.90 imes 10^{-11}$	J. Phys. Chem. Ref. Data, ¹⁴ 1997 (e)
200.0-300.0	2.7×10^{-27}	11000 ± 500	$2.90 imes 10^{-11}$	JPL Publication 97-4, ² (e)
279.6-294.2	5.50×10^{-27}	10724 ± 75	$2.34 imes 10^{-11}$	this work (a)

^{*a*} The information is given in the form $K_{Eq}(T) = A \exp((B \pm \Delta B))/T)$, where *T* is the absolute temperature (K), *A* is the Arrhenius factor, and *B* $\pm \Delta B$ is the temperature dependence and associated uncertainty. ^{*b*} a, r, and e denote absolute measurements, relative measurement, and evaluations, respectively.

Figure 6. Arrhenius plots, showing $\ln(K_{eq})$ in the range 275–298 K. Only part of the temperature range investigated by Burrows et al.⁸ and Cantrell et al.¹¹ are shown in the Figure.

Cantrell et al.¹¹ However, on closer inspection of the Arrhenius expression from this study, eq IV, and that of Cantrell et al.,¹¹ eq V,

$$\ln(K_{\rm eq}) = -60.13 \pm 0.66 + (10818 \pm 216)/T \qquad (V)$$

where the errors given are also expressed as 95% confidence limits, it can be seen that although the associated uncertainty range in the ln *A* factor and in the $\Delta H/R$ ratio of Cantrell et al.¹¹ embraces the corresponding values measured in this work the reverse is not true; i.e., the ln(K_{eq}) values of Cantrell et al.¹¹ lie outside the uncertainty range of the ln(K_{eq}) values measured in this work.

Although the K_{eq} values obtained in this work have been measured with a good statistical precision, the accuracy in terms of possible systematic errors needs to be discussed. A summary of infrared cross-sections of NO2 and N2O5 has been reported.15 The difference between different measurements of the infrared cross section of the 1600 cm⁻¹ band of NO₂ is only \pm 2%; thus this property seems to be well established. Concerning N_2O_5 , differences among the measurements are as large as 35%, probably reflecting difficulties involved in quantitatively handling this sticky and reactive gas. The infrared cross section of N2O5 at 1246.6 cm⁻¹ was determined in two different experiments using a mass-balance assumption as previously mentioned. One uncertainty regarding the experiment where N₂O₅ was produced by reacting NO₂ with excess O₃ was that the system also contained N₂O₄ and HNO₃. The concentrations of these gases were accounted for in the mass balance by measuring their absorptions, and thus, giving an uncertainty due to the possible uncertainty in their infrared cross sections. The concentrations of N₂O₄ and HNO₃ were, however, low and thus, the maximum contribution of these gases to the total NO_{y} was only 3% and 1%, respectively. The contribution from N₂O₄ and HNO₃ can therefore be regarded as negligible.

Figure 7. FT-IR spectrum showing NO₂ (at 1600 cm^{-1}) and N₂O₅ (at $1246 \text{ and } 1720 \text{ cm}^{-1}$). A small absorption at 1326 cm^{-1} , due to HNO₃, can also be seen. Water has been subtracted from the spectrum.

Figure 8. Absorbance spectrum of NO₃, corresponding to 2.9×10^{10} molecules cm⁻³. The spectrum is not high-pass filtered.

The photolysis experiment in the EUPHORE reactor yielded a cross section which is identical, within the limits of error, with that determined using the flow reactor and, therefore, the value $\epsilon_{N_2O_5}(1246.6 \text{ cm}^{-1})$, base $10) = (8.56 \pm 0.53) \times 10^{-19} \text{ cm}^2$ molecule⁻¹, which corresponds to the average of the two measurements was chosen. In the stated error for the $\epsilon_{N_2O_5}$ value, the error in the cross section of NO₂ is also included.

The accuracy with which NO₂ and N₂O₅ can be measured is also dependent on the quality of the FT-IR spectra. One critical aspect of the measurements of the NO₂ absorbance is the influence from water bands. The NO₂ analysis was, however, improved by first subtracting the water bands followed by using the NO₂ rotational band at 1602 cm⁻¹, where the intensity from water is at minimum. With this procedure the influence from water on the measurements was almost eliminated. Figure 7 shows a FT-IR spectrum after subtraction of water.

Since $\epsilon_{N_2O_5}$ was derived experimentally as a direct multiple of ϵ_{NO_2} any systematic error in the NO₂ cross section would be canceled out when calculating the $[N_2O_5]/[NO_2]$ ratio. The accuracy with which the $[N_2O_5]/[NO_2]$ ratio could be measured was estimated to $\pm 5\%$ which includes errors in the cross-section ratio and in the absorbance measurements.

The DOAS measurements yielded NO_3 spectra of very high quality. Figure 8 shows an NO_3 absorbance spectrum measured in the beginning of one experiment. Concerning the absorptivity of NO_3 , there is reasonable agreement in the literature on the

absorption cross-section values at 298 K; recent measurements agree to within $\pm 10\%$ on the value of the cross section at 662 nm.¹ Although uncertainties exist regarding the temperature dependence of the absorption cross section at 662 nm, the cross section appears to increase slightly with decreasing temperature. The following average temperature-dependent cross section at 662 nm was deduced using the average values from several investigations: $\sigma(662 \text{ nm}) = (3.63 - (5.13 \times 10^{-3}T)) \times 10^{-17}$ cm^2 molecule⁻¹. When using this expression to calculate NO₃ cross sections for the temperature range investigated here, the difference between the highest value at 279.6 K and that of 294.2 K is only 3.5%. The most recent measurements of the cross section of NO₃ have been performed by Yokelson et al.¹⁶ They determined a cross section of $\sigma(662 \text{ nm}, \text{base e}) = 2.23$ $\times 10^{-17} \,\mathrm{cm^2}\,\mathrm{molecule^{-1}}$ at 298 K and a temperature dependence which is described by the expression $\sigma(662 \text{ nm}) = (4.56 - (7.87))$ $\times 10^{-3}T$) $\times 10^{-17}$ cm² molecule⁻¹. This temperature dependence is higher and corresponds to an increase of about 5% when going from 294.2 to 279.6 K. The temperature dependence of the NO₃ absorption cross section, thus, seems to be somewhat uncertain. Since, for the present temperature interval, the overall uncertainty in the NO₃ cross section appears to be greater than the variation with temperature, NO₃ concentrations for all temperatures were calculated using the value $\sigma_{NO_2}(298)$ K, 662 nm, base e) = 2.1×10^{-17} , as recommended by Wayne et al.,1 which corresponds to the average of several investigations.^{7,17–19} Other equilibrium values, based on another choice of NO₃ cross section may, however, be calculated by multiplying our K_{eq} expression, $5.50 \times 10^{-27} \exp[10724/T]$, by $\sigma(T)/2.1 \times 10^{-17}$, where $\sigma(T)$ is a NO₃ absorption cross section of one's own choice.

From the above discussion we believe that the present measurements are reliable and recommend the following equilibrium constant for use in the temperature range from 279.6 to 294.2 K

$$K_{\rm eq} = 5.50 \times 10^{-27} \exp[10724/T]$$
 (VI)

Based on a propagation of errors calculation including uncertainties in the measurements of the $[N_2O_5]/[NO_2]$ ratio and the NO₃ concentration, the overall accuracy is estimated to be $\pm 15\%$.

As mentioned above, K_{eq} values calculated from eq VI fall in the lower end of the range of literature data obtained from absolute measurements. The value at 298 K is very close to those from Burrows et al.⁸ and Perner et al.⁹ Burrows et al.⁸ used a lower NO₃ cross section than in this study; if their K_{eq} -(298 K) value is recalculated using the higher NO₃ cross section from this work, a value of 2.35×10^{-11} cm³ molecule⁻¹ s⁻¹ is obtained, in excellent agreement with this study. Recent indirect measurements also suggest lower values for K_{eq} . Cantrell et al.,¹³ for example, calculated the temperature dependence of K_{eq} using the pressure and temperature dependence of the rate coefficient for reaction 1, reported by Orlando et al.,²⁰ and the rate coefficient for reaction -1.¹³ The result is given in Table 1 and yields a $K_{\rm eq}(298~{\rm K})$ value of 2.90 \times 10⁻¹¹ cm⁻³ molecule⁻¹, which is 24% higher than the present equilibrium constant. Our result may also be compared to the equation obtained from a similar calculation, taking $k_1([N_2], T)$ and $k_{-1}([N_2], T)$ rate coefficients from a recent critical evaluation of kinetic data (*J. Phys. Chem. Ref. Data* **1997**).¹⁴ The result from this calculation is shown in Table 1.

Although the present $NO_2 + NO_3 \leftrightarrow N_2O_5$ equilibrium measurements cover a limited temperature range, the result is interesting as it covers common tropospheric summer night temperatures corresponding to mid and northern latitudes. Since, the equilibrium partly controls the NO₃ radical concentrations, lower values mean higher tropospheric NO₃ concentrations than previously believed. This implies that NO₃ may be more important in initiating oxidizing processes in the atmosphere. N₂O₅ should, on the other hand, be less important as a reservoir of NO₃ radicals, thereby making heterogeneous conversion of N₂O₅ to HNO₃ on wet particles slightly less important.

Acknowledgment. Financial support of this work by the EC (European Commission) is gratefully acknowledged. The experimental work was carried out in the EUPHORE smog chamber facility at the Fundación CEAM, Valencia, Spain. The authors acknowledge the interest and financial support by the Generalidad Valenciana and Fundación BANCAIXA. We are also indebted to Millán M. Millán and Klaus Wirtz, CEAM, Valencia, Spain, for their assistance and technical support in the use of the EUPHORE chamber.

References and Notes

(1) Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P.; Canosa-Mas, C. E.; Hjorth, J.; LeBras, G.; Moortgat, G. K.; Perner, D.; Poulet, G.; Restelli, G.; Sidebottom, H. Atmos. Environ. **1991**, 25A, 1.

(2) DeMore, W. B; Golden, D. M.; Hampson, R. F.; Howard, C. J.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Ravishankara A. R.; Sander, S. P. JPL Publication 97-4, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 1997.

(3) Becker, K. H. Final Report of the EC-Project "The European Photoreactor EUPHORE", Contract EV5V-CT92-0059, 1996.

(4) Wängberg, I. An Experimental Study of Some Nitrate Radical Reactions of Importance to Tropospheric Chemistry. Ph.D. Thesis in Chemistry, Gothenburg, ISBN 91-7032-788-2, 1993.

(5) Stutz, J.; Platt, U. Appl. Opt. 1997, 36, 1105-1115.

(6) Gomer, T.; Brauers, T.; Heintz, F.; Stutz, J.; Platt, U. MFC Version 1.98 User Manual, University Heidelberg, 1993.

(7) Sander, S. P.; Kirchner, C. C. J. Phys. Chem. 1986, 90, 4135-4142.

(8) Burrows, J. P.; Tyndall, G. S.; Moortgat, G. K. Chem. Phys. Lett. **1985**, 119, 193–198.

(9) Perner, D.; Schmeltekopf, A.; Winkler, R. H.; Johnston, H. S.; Calvert, J. G.; Cantrell, C. A.; Stockwell, W. R. *J. Geophys. Res.* **1985**, *90*, 3807–3812.

(10) Tuazon, E. C.; Sanhueza, E.; Atkinson, R.; Carter, W. P. L.; Winer, A. M.; Pitts Jr, J. N. J. Phys. Chem. **1984**, 88, 3095–3098.

(11) Cantrell, C. A.; Davidson, J. A.; McDaniel, A. H.; Shetter, R. E.; Calvert, J. G. J. Chem. Phys. **1988**, 88, 4997.

(12) Hjorth, J.; Notholt, J.; Restelli, G. Int. J. Chem. Kinet. 1992, 24, 51-65.

(13) Cantrell, C. A.; Shetter, R. E.; Calvert, J. G.; Tyndall, G. S.; Orlando, J. J. J. Chem. Phys. **1993**, *97*, 9141–9148.

(14) Akinson, R.; Baulch, D. L.; Cox, R. A.; Hampson Jr, R. F.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data, in press.

(15) Mentel, TH. F.; Bleilebens, D.; Wahner, A. Atmos. Environ. 1996, 30(23), 4007–4020.

(16) Yokelson, R. J.; Burkholder, J. B.; Fox, R. W.; Talukdar, R. K.; Ravishankara, A. R. J. Phys. Chem. **1994**, *98*, 13144–13150.

(17) Ravishankara, A. R.; Mauldin, R. L. J. Geophys. Res. 1986, 91, 8709-8712.

(18) Cantrell, C. A.; Davidson, J. A.; Shetter, R. E.; Anderson, B. A.; Calvert, J. G. J. Phys. Chem. **1987**, *91*, 5858–5863.

(19) Canosa-Mas, C. E.; Fowles, M.; Houghton, P. J.; Wayne, R. P. J. Chem. Soc., Faraday Trans. 1987, 83(2), 1465–1474.

(20) Orlando, J. J.; Tyndall, G. S.; Cantrell, C. A.; Calvert, J. G. J. Chem. Soc., Faraday Trans. **1991**, 87(15), 2345–2349.